Using an artificial neural network to predict the optimal conditions for enzymatic hydrolysis of apple pomace
نویسندگان
چکیده
The enzymatic degradation of lignocellulosic biomass such as apple pomace is a complex process influenced by a number of hydrolysis conditions. Predicting optimal conditions, including enzyme and substrate concentration, temperature and pH can improve conversion efficiency. In this study, the production of sugar monomers from apple pomace using commercial enzyme preparations, Celluclast 1.5L, Viscozyme L and Novozyme 188 was investigated. A limited number of experiments were carried out and then analysed using an artificial neural network (ANN) to model the enzymatic hydrolysis process. The ANN was used to simulate the enzymatic hydrolysis process for a range of input variables and the optimal conditions were successfully selected as was indicated by the R 2 value of 0.99 and a small MSE value. The inputs for the ANN were substrate loading, enzyme loading, temperature, initial pH and a combination of these parameters, while release profiles of glucose and reducing sugars were the outputs. Enzyme loadings of 0.5 and 0.2 mg/g substrate and a substrate loading of 30% were optimal for glucose and reducing sugar release from apple pomace, respectively, resulting in concentrations of 6.5 g/L glucose and 28.9 g/L reducing sugars. Apple pomace hydrolysis can be successfully carried out based on the predicted optimal conditions from the ANN.
منابع مشابه
Prediction of polyvinyl alcohol (PVOH) properties synthesized at various conditions by artificial neural networks technique
In this research samples of PVOH were synthesized at various reaction conditions (temperature, time, and amount of catalyst). First at 25˚C and 45˚C and constant catalyst weight samples of PVOH were prepared with different degree of hydrolysis at various times. For investigation of the effects of temperature, at times 20 and 40 min and constant weight of catalyst PVOH was prepared at various te...
متن کاملOptimisation of enzymatic hydrolysis of apple pomace for production of biofuel and biorefinery chemicals using commercial enzymes
Apple pomace, a waste product from the apple juice industry is a potential feedstock for biofuel and biorefinery chemical production. Optimisation of hydrolysis conditions for apple pomace hydrolysis using Viscozyme L and Celluclast 1.5L was investigated using 1 L reaction volumes. The effects of temperature, pH, β-glucosidase supplementation and substrate feeding regimes were determined. Hydro...
متن کاملOptimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کاملPredicting Force in Single Point Incremental Forming by Using Artificial Neural Network
In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...
متن کاملAn Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression
Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...
متن کامل